DIAPHONIA
DIagnostic framework to Assess and Predict tHe impact Of underwater NoIse on mArine species
The main goal of DIAPHONIA is to fill existing gaps in the current knowledge regarding the impact of underwater noise on marine organisms of the food web, including invertebrates and commercial species, in different European basins. DIAPHONIA will develop a possible diagnostic fingerprinting approach composed of several tissue markers incorporating molecular, metabolomic and microscopic techniques in order to identify functional and morphological changes in the acoustic pathways of invertebrates, fishes and marine mammals. Additionally, the foreseen activities will explore the relationship between behavioural and cellular/molecular/organ effects of both long-term noise exposure of two commercial fish species in different European ocean basins, and short-term noise exposure in invertebrates and fishes, from micro- to macroscale. The project will gain insight into the morpho- functionality of the peripheral hearing apparatus in marine mammals and its role in defining the animal’s acoustic sensitivity, by developing a standardised workflow for wave propagations in the associated tissues, to be extrapolated to other marine organisms. Finally, DIAPHONIA will develop an in-vitro system to support future studies on acoustic over-exposure by developing Induced Pluripotent Stem cells-derived organoids from stranded cetaceans and fish fibroblasts to recreate the auditory sensory organ leading to elucidate mechanisms of sound damages.
In summary, DIAPHONIA has the ambition to make substantial progress in various fields of expertise. The development of organoids, the implementation of new biomarkers and the development of a diagnostic approach to underwater noise impact will be brought from basic principles observed in the lab to validation in the field via different experiments. Linking behavioural with physiological responses will contribute a huge step forward for further understanding the underlying effects of noise on fish. Also, the development of 3D models helping to predict the impact of sounds in odontocetes species will lead to future application in the field, opening the way to predictive models.